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An investigation is made of the scattering effect of a random ocean bottom of 
constant average depth upon the propagation of shallow water waves. Of 
particular concern is the case of long-distance propagation, in which the con- 
ventional perturbation schemes fail to apply. The approximation scheme em- 
ployed is basically one of selective summation of the type used in other areas 
of physics such as the theory of many-body interactions. Results are obtained for 
the average wave and the two-point correlation function of the wave field for 
the case when bhe ocean statistics are homogeneous and isotropic. The applica- 
tion of the results to the case of a tsunami is discussed. 

1. Introduction 
An interesting and successful application of hydrodynamics is that to  the 

propagation, under gravity, of disturbances on the free surface of a liquid. In  
particular, the linear ‘shallow-water’ theory predicts that long waves over an 
ocean of uniform depth travel at constant velocity without change in shape. In  
this paper we investigate the propagation of long waves, over large distances, 
in an ocean whose depeh varies in a random or stochastic fashion about a constant 
mean value. The wave field is, therefore, governed by a linear partial differential 
equation with stochastic coefficients. It is well known that this type of equation, 
although linear in the field quantities, is nonlinear with respect to the stochastic 
variables. Thus an attempt to obtain a particular momen6 of the wave field 
results in the appearance of higher order moments, and an infinite hierarchy of 
simultaneous equations must be solved in order to obtain any single moment. 

The problem of wave propagation in random media has received considerable 
attention in recent years (see, for example, Frisch 1968) and nearly all the 
approaches have used a perturbation analysis of one form or another. The main 
idea is to linearize the problem by expanding the wave field in terms of a small 
parameter characterizing the strength of the random inhomogenieties. Various 
methods of effecting this perturbation have been proposed. 

For the case of long-distance propagation the conventional perturbation 
schemes fail to apply. Hence, although Keller (1958) has offered a mathematical 
explanation of the use of geometrical optics for a shallow-water variable-depth 
analysis, this approach is not applicable over long distances since i t  fails to 
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account properly for the effects of diffraction. The Born approximation, on the 
other hand, is vdid only for finite scattering regions. In  addition it is a single 
scattering approximation. Albhough Kay & Silverman (1 958) have suggested 
that the randomness of the medium reduces the importance of the multiple 
scattering terms, the cumulative effect of these terms over large distances cannot 
be neglected. Katz (1962) has applied both geometrical optics and the Born 
approximation to the scattering of long waves over a random ocean. His results, 
therefore, fail to hold for large distances. Kajiura (1961) has applied the Rytov 
method, or method of smooth perturbations, to the two-dimensional propaga- 
tion of long waves over a random bottom. This technique, however, also fails at 
large distances as was demonstrated by Brown (1966). 

The underlying difficulty with the conventional perturbation schemes is 
that they are of finite order. That is, the approximation in each case involves 
only a finite number of the terms in the original perturbation expansion. For 
homogeneous random media these terms are secular, i.e. proportional to the 
propagation distance, and consequently for large distances are no longer small, 
regardless of the strength of the inhomogeneities. However, in recent years 
considerable progress has been made in overcoming Chis difficulty; formal per- 
turbation schemes that selectively sum infinite subsets of terms in the original 
expansion have been developed. In  this paper a diagrammatic version of this 
type of technique is employed. 

2. Governing equations 
We consider the motion of an incompressible inviscid fluid of constant densitiy 

over an ocean of variable depbh h(r), where r = (x, y). It is well known (see Stoker 
1957) that the propagation of small amplitude long waves in such an ocean is 
governed by the equation 

(2.1) 

where V = (a/ax, a/@), v(r, t )  is the elevation at time t of bhe free surface above 
the horizontal plane z = 0, g is the acceleration of gravity, and 

aq/at2 = gv . (hVy) f q, 

with Q(r, z, t )  a given volume source term. We shall assume that h(r) is a atatis- 
tically homogeneous random function and that the fluctuations of h(r) about 
its mean value are small. Thus we let () denote ensemble averages, write 
h(r) = (h)  + h'(r) and assume that e = (h'2)%/(h) 4 1. For this case, Katz (1962) 
has shown that in order for (2.1) to describe the surface elevation adequatelythe 
following conditions must be met: (h)/h 4 1, where h is a characteristic wave- 
length; yrmg/(h) < (h'2)*/(h), where qrms = (y2)% is the root-mean-square surface 
elevation; I 2 A, where I is the correlation length of the random function h'(r). 
The first; condition is the usual shallow-water assumption; the second ensures 
that it is the randomness of the bottom and not the neglected nonlinear terms in 
(2.1) which is the important perturbing disturbance to the wave field and the 
third ensures that the basic wave motion is similar to that over a flat bottom. 
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We shall consider the steady-state time-harmonic problem associated with 
(2.1) in which 

Q(r7 2 7  t )  = & O W  - 20)  exp ( - iwt) ( - h(r) < 20 < r(r, t ) )  

and Qo(r) vanishes outside some neighbourhood of r = 0. If we let 

q(r, t) = $(r) exp ( - iwt) 
we find that $ satisfies 

VZ$ + kiq5 = - sv . (pV$) + f, 
where k$ = oP/g(h), p(r) = l~'(r)/[(h'~(r))]* and f(r) = -i(g(h))-lwQ0(r). It is 
perhaps worbh noting that the physical process of wave generation is not im- 
portant for our purposes since we shall examine the waves far from the source. 
Thus no particular physical significance is attached to Q. By assuming that $(r) 
satisfies the radiation condition 

and defining Go(r, p) = BiHhl)(kolr - pl), where Hi1) is the zero-order Hankel 
function of the firsb kind, it can be shown that (2.2) is equivalent to the following 
integral equation for 4, = a$/&< (i = 1 , 2 )  : 

$,iW = 4PiW + s[Go,ij(r, P),lu(P) $,j(P)l. (2.4) 

In  the above equation (with summation over repeated indices implied) we have 
defined 

and 

where, in fact, it can be shown that 

m 
We assume that 

substitute this into (2.4), take averages, and find that 

$,c = c @$y7 

($IW) = [Go,&-, PA, . . . I  rGo,jfi-ljn(Pn-19 Pn)7 @(el) ..* P(Pn))$$)JPn)I ' . *  1. (2.8) 

n=O 

In  what follows, we shall assume that p is a Gaussian random process. We shall 
show later that this is not a restrictive assumption for s 4 1.  In  this case all odd 
moments of ,u vanish and all moments containing 2n p-factors yield (2n)!/2%! 
terms, constructed from all possible permutations taken two at  a time. Thus 

and it is convenient to represent this series diagrammatically by using the 
symbols defined in figure 1. This representation is shown in figure 2. Of oourse, 
detailed rules may be given for construction of the diagram in figure 2, but these 
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- 
P1 P2 

(4 . 

L J 

+ ... 
FIGURE 2. Diagrammatic representation of ($,((I)) showing terms to fourth order in E .  

are fairly obvious if we note, for example, that the fourth term on the right-hand 
side of the equality sign in figure 2 represents the term 

c Q o , i j p ,  P A  [G0,j1ja’ [GO,izis’ [G0,jsir(P3’ P4)’ 

(P(P1) Pu(P3)) (Pu(P,)P(P,)) 4Pj,(P4)1111. (2.9) 

An integral equation for ($,i(r)) may be obtained from figure 2 by using the 
following summation procedure. First, all double lines ( f in ’s)  appearing in figure 
2 are replaced by single lines (G,,in-lfn’~). Second, the diagrams which are modi- 
fied by the first step are used t o  define the effective Green’s function GeJr, p), 
as shown in figures 3 (a) ,  (b )  and (c). Third, the effective Green’s function is used 
to reduce figure 2 to the integral equation shown in figure 3 (d).  Analytically, we 
have 

($ , i (W = $w-, + W O , & ,  PA7 [Ki:!z(P17 Pz), <$,j2(Pz))ll, (2.10) 

where K$l;k is defined as in figure 3 (c ) .  
Using the diagrammatic techniques we have outlined, it is no6 hard to find an 

integral equation for the second moment of the wave field. Prom our assumption 
as to the Gaussian nature of the process ,u(r), it  is clear that this moment will be 
given by the infinite series 

where * denotes complex conjugate. We introduce the symbol for (#,i(r)$>(r’)) 
shown in figure 4 (a), use (2.4) t o  calculate each term in the series, and construct 
diagrammatic representations of the terms using the same rules as for the first 
moment, except that products are denoted by placing one diagram above the 
obher. The result is shown in figure 4(b) ,  where, for example, the second diagram 
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(d)  0 = = 

FIGURE 3. Diagrams showing (a) the definition of Ge,&,p), (b) the integral equation for 
G&r,p),  (c) the definition of Kzj,(pl,pz), ( d )  the integral equation for {$,dr)). 

on the right-hand side of the equality sign in figure 4 ( b )  represents the 
term 

The sum of all diagrams whose top and bottom lines are not connected by wavy 
lines is ($,i(r)){$:j(r’)}y as may be seen by comparison with figure 2. The re- 
maining diagrams can be summed by introducing the effective Green’s function. 

[Go,4j1(r, Pl)’ [G%*(r” P2)Y ( A P l )  P(P2)) $%,(PI) $%(Pa)ll. (2.11) 
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After some manipulation, we find that figure 4 (a) is equivalent to the diagram- 
matic equation in figure 4(c). Thus, tihe second moment satisfies the integral 
equation 

(5qr) 4l”i(r’)) = ($,t(r)> <fxr’)> + w e , i j p ,  P A  
[qj&’, P2), q$,,,J4(P1, P2, P3, P4)  (4,js(Ps) 454(P4))l19 (2.12) 

where K#zjsjr(pl, p2, p3, p4) is defined in figure 4 (d) .  

3. Perturbation solutions for the first and second moments 
As they stiand, (2.10) and (2.12) are non-tractable since their kernels are them- 

selves infinite series. These equations are importanti, however, because they 
clearly indicate the nature of any approximations one would make in order to 
render the equations solvable. 

An examination of the behaviour of the terms in (2.10) reveals that for dis- 
kances of propagation, x, large compared with the correlation length 1 of the 
bottom fluctuations, diagrams of order E~~ are secular or increase with propa- 
gation distance as (x/Z)2n-m, where m is the number of times that severing each 
interior straight line in a diagram results in the severing of one or more wavy 
lines. Therefore n < m < 2 n  - 1 , and it follows that the diagram for which m = n 
is larger than the other diagrams of order E~~ by at least xl l ,  which is very much 
peatier than one. I b  would be tempting at this point to disregard diagrams of 
order eZn for which m =/= n. However, since diagrams of lower order in E are secular 
to the same degree as diagrams of higher order, it becomes necessary to compare 
terms with the same degree of secularity. When lengths are made dimensionless 
by using the correlation length b ,  it is found thati terms for which m + n may be 
neglected for large propagation distances provided that the condition e2E2l2 < 1 
is met. Inspection of the resulting equation indicates that omitting terms for 
which m + n is equivalent to approximating K ,  by the first term on the right- 
hand side of the equality sign in figure 3 (c) with Ge = Go. This type of approxima- 
tion has ‘been called the smoothing method and its validity has been the subject 
of much investigation (see Frisch (1968), and the references cited therein, and 
Molyneux (1971) for a discussion of the effects of keeping higher order terms in 
figure 3 ( c ) ) .  The complexity of the equations precludes its rigorous justification, 
but in certain cases it is possible to compare the smoothing method with the exact 
solution for solvable models (see McKenna & Morrison 1970). It is found that the 
approximate and exact solutions match closely in these cases. Therefore, let us 
write @,,Jr) = ($,i(r)) and assume that 

In  addition, we shall assume that ,u is statistically isotropic as well as homogen- 
eous, so that 

By employing property (2.7) it can be shown that (3.1) is equivalent to 

@l,&-) = 4W) fe2[Go,ij1(r, P A  I-G0,jlj2(P1, PZ) ,  Cu(Pl)ru(P2)) @l,j2(P2)l1.  

(,u(r),u(r’)) = Nlr-r’l). 

(3.1) 
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If we define the convolution of the vectors u(r), v(r) by 

v(p)u(r-p)dZp, (3 .3)  

Chen (Dl satisfies an integral equation of the convolution type and can be deter- 
mined by Fourier transformation. Defining 

and applying the operator 9 to both sides of (3 .2 )  we find that 

m l ( K )  = j ( K )  D-l ( K ) ,  

D ( K )  = ~ ; - K Z - E Z K ~ Q ( K )  whereK = I K I ,  
and 

Defining an effective wavenumber k, as that value of K satisfying D(K) = 0, it 
then follows that 

where Ge(r, p), the effective Green's function, is given by the free-space Green's 
function with ko replaced by ke, and where 

(3 .9)  

The solution for the average coherent wave thus depends upon the properbies 
of k,, which in turn depend upon the particular form for R(r). It should be noted 
that since derivatives of p appear in the expression for k,, the form 

R(r) = exp ( -  r/Z) 

is noC permissible, since for this choice,u(r) is not even mean-square differentiable. 
Approximate values of k, are calculated in the appendix for the case when 

R(r) = exp ( - r2/Z2). (3.10) 

When s2k;P < 1 ,  so that the smoothing approximation is justified, the result is 
that 

F(k,) = [1+ SZ&(k,)  + g€zk;9'(ke)]-? 

ke = ko + fr"kO(1- 1/27) + ~ " ~ Y J C O  * ~ X P  ( - Y) (KO(?) + K1(7)/7) 
+ &i~ko~2?exP ( -7)  (W) --W)/?% (3.11) 

where y = ikij Z 2  and I, and K ,  are the modified Bessel functions (of order n = 0 , l )  
of the first and second kinds respectively. In  view of the fact that k, has a positive 
imaginary part, the amplitude of the coherent wave decreases with increasing 
propagation distance. Physically this is to be expected since the randomness 
of the ocean bottom has the effect of continually scattering energy from the 
coherent wave to the fluctuating, or incoherent portion of the wave field. 

It is of interest to consider what effect the V p .  V$ term in (2 .2 )  has upon the 
effectivewavenumber. When considering the case when kol is large it is customary 
t o  neglect this term and to  consider the equation 

( l + s p ) V 2 + + k ; $  = f(r). (3.12) 
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By proceeding in a fashion similar to that above it can be shown that when the 
correlation function is again given by (3.10) the expression for the effective wave- 
number (designated in this case by E,) becomes 

L, = k, + &+1C, + ~ c z k o y  exp ( - y )  (Ko(y)  + inI,(y)), (3.13) 

and by comparing (3.11) and (3.13) it is seen that for k , l B  1 iihe expressions for 
k, and L, become equivalent, as expected. It is interesting to note, however, 
that omitting the V p  . Vq5 term results in an effective wavenumber with a larger 
imaginary part than that which would have been obtained if this term had been 
retained. On the other hand, it can be shown that omitting the V p  . Vq5 term does 
not alter the effective wavenumber for a one-dimensional ocean, where the scat- 
tering is restricted to the forward and backward directions. Consequently, it can 
be inferred that the Vp.V$ term in the two-dimensional case tends to  reduce 
scattering outside the direction of the coherent wave. It follows that, for a fixed 
propagation distance, increasing the correlation length of an isotropic bottom 
decreases the off-axis scattering, which results in an increase in the amplitude 
of the coherent wave. 

Let us now turn to the calculation of the second moment 

QZ@, r') = (m-) 9*(r')>. 
In the smoothing approximation we again replace K f ) 2 j 3 j 4  in (2.12) by the first 
term on the right-hand side of the equals sign in figure 4 (d). We then have 

Q 2 , i j k  r') = @1,&3 am')  
+e2[Ge,tjl(r* el), [G2jj2(r', ~ 2 ) ,  N l p l -  821) @2, jx j s (~19  P ~ ) I I -  (3.14) 

By again employing property (2.7) it can be shown that (3.14) is equivalent to 

QZ(r, r') = Ql(r) Q:(r') 

We shall obtain an approximate solution of (3.15) for the case in which the source 
produces an average wave which depends only on 2, that is, an attenuated plane 
wave. Then the second moment may be assumed to be of the form 

Qz(r, r') = @z(x, x' - 5, IY' - YI 1, (3.16) 

which is consistent with the assumption that p is statistically homogeneous and 
isotropic. In our calculation of Q2 we shall assume that back-scattering is negli- 
gible and that kl 9 1. In this case only small-angle scattering is important and we 
may neglect the V p .  V terms in (3.15) on the basis of our arguments above. We 
have, for x = x' > 0, 

Q&, 0, IY'-Yl) = @,(XI 'oI(x)+€2k~fSG~(r,~l)G?(r',Pz)R(lP1-P21/) 

x Qz(x1~~Z-xl~ IYz-Y11)d2Pld2Pz~ (3.17) 

where pj = (xj,yj). The integral in (3.17) may be simplified considerably. First, 
since we are considering long distances of propagation, we may replace the 
Green functions by their asymptotic form 

G,(r, p) - 4-1(2n-)-hlr-pl-4exp[ihec,lr-p[ +&in]. 
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Second, since only small-angle scattering is important, the major contribution 
to the integral comes from those regions included in a triangle with vertex at  the 
observation point, with axis parallel to the x direction and with angular aperture 
8 = (k0l)-l < 1. In  these regions, kJr - pll in the exponent may be approximated 
by ke(x - q) + ke(y - y1)2 x $(x - x1)-l, with an error of order k , , ~ ( k Z ) - ~ ,  and we 
shall assume in what follows that x < ( 1 7 ~ ~ 1 ) ~  1. Finally, keeping only the first term 
in the expansion of the denominator and changing variables from xi and yi to 
xi = s( and yc - xi = pi, the integral (I say) in (3.17) becomes 

In the small-angle scattering approximation the term 

-ike*(y‘-S2-p2)2/2(x-s,-p,)  

may be replaced by - ik,*(y’ - s2 - ~ ~ ) ~ / 2 ( x  - s,) since the neglected term is of the 
order (kol)-l(plZ-l), which is very much less than one. In  addition, in the denomi- 
nator x - s1 -pl  may be approximated by x - sl. Integrating the resulting equa- 
tion over s2 yields 

where A ,  = i(x - sl)/ke = A,*. The integral over p 2  is of the form 
m / f(P2) exp [ - (Y’ - Y - P2)2 vl dP2, 
--m 

where v = (2(A, +A2))-1. Since v is large and positive when xZ-W g 1, this inte- 
gral may be approximated by using the Laplace method (e.g. Copson 1965), 
with the result that 

-ik%-s1 -PA1 @2(s1,131, IY- Y’l) WP,2,+ (Y- Y’)2)*1 dSIdP1. 
(3.20) 

Finally, it is assumed that 

@2(Sl,Pl, IY-Y’l) = exP(-ikoP,) @ 2 ( S , O ,  IY-Y’I). (3.21) 

This form for the p1 dependence is permissible since only values of p, < I con- 
tribute significantly to the integral and at  this distance significant diffraction does 
not occur. By the same reasoning, the term (ik: - iko)p ,  is of order e2kt12(plZ-1), 
which is very much less than one, and may be neglected. Thus, (3.20), with 
d = ly-y’\,becomes 

@2(% 094 = I @,(4 I + EeqklJ: - exp[(ik,-ikz) (x-sl)] 02(s,  O,d)ds,P(d),  (3.22) 

where P(d) = R[(p2+d2)4]dp. (3.23) 
-m 
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By substituting Ql(x) = exp (ik,x) and solving (3.22) for Q2, we find that 
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cD2(x7 0, d )  = I @l(x)(2exp{&2kiF(d)). (3.24) 

This expression can be further simplified by noting from (A4) (see appendix) that 
when k,l 1 

Im(k,) N 2 “YnJ: J,(k,r) J,(k,r) R(r)  rdr.  (3.25) 

Since R(r)r  attains its maximum value for r N I ,  the Bessel functions may be 
replaced by their asymptotic forms to obtain 

Im (k,) 2: +e2kiF(0) + O(e2k,), (3.26) 

so that, restricting x such that e2k,l(x/l)  < 1, it  follows that 

cD2(x, 0, d )  = exp {$e2k@’(d) - F(0))).  (3.27) 

Since F ( d )  < F(0)  the above expression indicates a loss of coherence as a result 
of the propagation over the random ocean. We note that (3.27) gives Q2 only for 
the case in which both observation points lie in the same plane ( x  = x’). We have 
not considered the case x =k XI. 

4. Discussion and application of results 
It has been found that the long-distance propagation of shallow water waves is 

characterized by an effective wavenumber which governs the speed and attenua- 
tion of the coherent wave. Likewise the loss of coherence of the two-point corre- 
lation function was also found to be dependent upon the effective wavenumber. 
It is of interest to examine the conditions under which the above results apply 
to the propagation of tsunamis. 

According to Cagle (1962), a typical tsunami is about 1 f t  high, 100 miles long 
and travels at  a speed of 250 miles per hour. The ocean is typically 12 000 f6 deep, 
so that the shallow-water assumption h(h)-l $ 1 is clearly satisfied. Statistical 
information regarding the ocean floor is, on the other hand, rather limited. In  
the Pacific, where approximately four-fifths of all tsunamis occur, there exist 
large-scale features (such as the crest of the East Pacific Rise, large fracture 
zones, etc.) whichviolate our assumption that the depbh is statistically homogene- 
ous and isotropic. The analysis can therefore be applied only to those regions 
which exclude such topographic forms. Smith (1965) has performed a statistical 
analysis of the sea-floor relief in the north-east Pacific. The major conclusion to 
be drawn from this work is that, excluding the above mentioned anomalous 
regions, the depth distribution is nearly Gaussian for bottom features having 
wavelengths up to 16 miles, with the r.m.s. deptih variation typically around 
34 fathoms, so that E N 1.7 x For these values the linear shallow-water 
equations hold, and the smoothing approximation is justified. Katz (1962), on 
the other hand, takes e2 N 2 x 1 0-2 and a correlation length of 500 miles. Although 
these values satisfy the linear theory they violate the smoothing requirement that 
e2kV < 1. Katz’s values, however, were based on raw data taken over the Pacific 
for which the average depth was approximately 1400 fathoms. His value of E 
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therefore corresponds to an r.m.5. depth variation of approximately 200 fathoms, 
a value representative of the large-scale features mentioned above. 

Admittedly then, our theory fails to account properly for the larger scales 
over those localized portions of the ocean for which the smoothing requirement 
s2k:12 < 1 is violated. However, if we assume that their cumulative effect over 
long distances of propagation is small, we can determine those values of the 
r.m.s. depth variation and correlation length which are appropriate for the 
application of our theory. We shall try to infer these from an examination of the 
wave field itself. Tsunamis are known to travel great distances: for example, the 
Chilean tsunami of 23 May 1960 resulted in extensive damage to the Hawaiian 
Islands, some 6000 miles away. We shall neglect the effects of the earth's curva- 
ture and assume that scattering by irregularities in the ocean bottom attenuates 
the coherent wave by e-l of its initial value after it has traversed 6000 miles. 
Prom (3.11) we see that Im (ke/ko) = ( ~ k , Z ) ~ F ( k ~ l ) ,  where 

F ( z )  = &r exp ( - +x2) [I,(+x2) - (2/x2)  11(+x2)]. 

Since ke is now known we can determine E and I from (3.11) provided we assume 
that conditions ideal for the application of our theory prevail, i.e. provided we 
look for the minimum value of the perturbation parameter 

( ~ l c , 1 ) ~  = Im (ke/ko)/F(kol) 

in the region k,.! 1. We find that ( ~ k , l ) ~  is a minimum for k,Z 21 4.2, correspond- 
ing to a correlation length of 67 miles and a r.m.8. depth variation of 110 fathoms. 
These values lie beCween those of Smith and Katz, and in addition satisfy all of 
the above requirements. 

Appendix 
From (3 .6 )  it follows that the effective wavenumber k, satisfies the equation 

k? = k: - E": Q( k,) , (A11 

where = ikejl G0,,~R(ke)-kej,7c, , ,k,~GO,i~R,3~(ke).  (A21 

By introducing the relations 

Go(kor) = - $iHt'(k,r) ,  Go,j, = @k0H$1)(kor) rjlr-l 

and noting that 
2n 

J,(kr) = (274-n  1 exp (ikr cos e)  cos (no) do, 
. n  - .  

it  is easy to show that 
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The integrals above, where R(r) = exp ( - r2/P) ,  are not expressible in closed form 
since the cylinder functions appear in combinations with those with different 
arguments and different orders. In order to obtain a closed-form expression for 
k, the calculations will be limited to the case in which @(I%,) may be approximated 
by &(k,). To within the same approximation Ice may be replaced by k,. The 
second integral term in (A 3), I2 say, may then be expressed in terms of cylinder 
functions of the same order by first noting that 

I2 = gin R'(r)  {Hp'(k,r)  J,(k,r) +H:l)(kor) JyC,r)} k,rdr, (A 4) 

Ht"(Z) = d H p / d z  = 1 4,  
JO* 

where 

J;(z)  = dJo/dZ = -J,(z) 
and z = kor.  For r > 0, J,(z) and H&')(z) satisfy the equations 

z2Hpff (z )  + zHp'(z) + z2Hg'(z) = 0, 

z2J;I(z) + z J ~ ( z )  + z2J0(z) = 0. 

Multiplying the first term by JJz,  the second by Hil)/z and adding gives 

It follows that 
d(k,r(H~''J; + Hf" J,)}/d? = - 2k:r(Hp)J0 - Ht1) J1). 

By introducing the asymptotic forms of H,")(koS) and J,(ko6), for 6 4 1 it can be 
shown that 

kor[Hil-)Jh + Hi')' J,] = 2in-l- 2ki /~@?L1)Jo-H$l)J1) d[.  (A 5 )  

Substituting (AS) inti0 (A4) and integrating the second term by parts yields 

Each of the integrals in the resulting expression for @(k,) can then be written in 
the form s," ~ : l ) ( i i , r )  ~ " ( t t ~ r )  exp ( - r 2 / ~ 2 )  r2~+1 dr, (A7) 

where h is either 0 or 1. Consequently it suffices to consider the evaluation of 
integrals containing the products J,(k,r) J,(k,r) and J,(k,r)  L, , (k ,r ) .  Now the 
product of two Bessel functions can be represented by the series (see, for example, 
Nielsen 1904, p. 25) 

m 
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which is exactly the simplification which was sought by assuming that 
Q(kJ 2: @(ko).  Taking a = p = k,, p = v and integrating term-by-term yields 

m f J,(k,r) J,(kor) exp ( - r2/Z2) @+ldv 

Similarly it follows that 

(A 14) 
Equation (A 11) can be written in closed form by noting that (Nielsen 1904, p. 21) 

Combining (A 15) and (A 11) for the case when h = 0 yields the (known) result; 
that 

I p v ( k , r )  J,(k,r) exp ( - r2/12) r dr = 12/2 J,(x) eix( -i)v. (A 16) 

Likewise it is easy to show that 

14 d 
2 ax Joa J,(k,r) J,(k,r)exp(-r2/Z2)r3dr = -- [x( -i)”J,(x)eiX]. (A 17) 

The integrals involving J, J-, can likewise be expressed in closed form. For in- 
tegral values of n, J, can be expressed as (Watson 1944) 

(A 18) Jn(x) = - j O0 exp (ix cos #) cos (n#) a#. 
ni” 0 

For arbitrary v, let 

Clearly 4, reduces to J, for integral v. Furthermore, it can be shown that 

The function #, is closely related to the Neumann function Yn(x). In  this regard 
Nielsen has shown that 

where 

2 aJV a#, Y,(x) = --I - 2 ay 1 - i7rJn(x) - gn(x),  

5= s ! (n - s + 4) (24%-s ' 

n av y = n  v=n 

n-1 (2n-s- l)! 
a,(x) = 2nte-ixin 
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It follows immediately from (A 21) and (A 14) that for h = 0 

J. P. Elter and J .  E. Molyneux 

1; ~,(k,r) ~-”(k,r) exp ( -+2) r dr = iE2eisiv (A 23) 

and, by analogy with (A 17), 

14 a 

H,(k,r) = J,(k,r) +iY,(k,r) ,  

som J,(k,r) J-,(k,r) exp ( -  r2/12) r3 dr = - - {x(i)veizq5,(x)). 

Y,(k,r) = [cos (m) J,(k,r) - JJc,r)]/sin (m). 

(A 24) 2 ax 
By definition, 

with 
Consequently 

Taking the limit as v -+ n, applying l’H6pital’s rule and using (A 21) results in 
the relation 

jOm ~,(k,r) ~ , ( k , r )  exp ( - r 2 / ~ )  rdr 

= +12eiXe-*(n+1)ni [iH$)(x) + (i/2n) v , (x ) ]  (A 25) 
and, in exactly the same fashion, 

(A 26) 
The expressions on the right-hand sides of the above equations can be rewritten 
in terms of the modified Bessel functions through Ghe use of the relations (see, 
for example, Watson 1944, p. 77) 

(-n < argz < in). I I,(x) = (-i)” J,(iz) 
K,(z) = +niH;?(iZ) 

When this has been done, and the expressions resulting from differentiation have 
been simplified through the recursion relations for I,, K,, one obtains 

i soa Hhl)(k,r) J,(k,r) exp ( - r2/12) r dr = &Z2exp ( - Y) K,(r)] , (A 28) 

~ o ~ H ~ 1 ~ ( k o r ) J l ( k o r ) e x p ( - r 2 / 1 2 ) r d r  = -$Z2exp(-r) i (A29) 

lorn ~ 1 1 ) ( k , r )  ~ , ( k , r )  exp ( -  r 2 / ~ 2 )  r3dr 

= Q ~ * ~ X P  ( - r )  [~ ( IoW - Idr)) -: + K1(r))]  , (A 30) 

where r = &k;l2. Substituting these expressions into the expression for Q(k,) 
yields the following expression for k,2: 
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